个人中心  用户登录  用户注册
检索条件
搜索范围     关键字     每页显示条数
开始时间   结束时间        
搜索结果如下(共94条):

搜索范围:全部 ;关键字:炼钢;搜索位置:无限定;

1:[科技成果评价--冶金自动化与信息技术]基于大数据的钢铁生产全流程质量控制与分析系统研究与应用

本项目聚焦目前钢铁企业在质量管控和分析方面面临的共性问题,利用大数据及人工智能技术,突破了传统IT信息化系统框架结构、技术水平、适用领域等局限性,研发了一套适用钢铁企业全流程、全工序的质量分析管控平台,并应用于钢铁生产最为复杂的炼钢和轧钢工序,以现代质量管理方法为基础、以信息化系统为手段、以智能制造为主导,实现生产可管控、异常可预警、过程可追溯、缺陷可诊断、能力可评价、质量可预测、研发可推理。运用全面质量管理工具,辅助技术人员确保产品质量的稳定性,持续提升产品质量,不断提高顾客满意度和企业竞争力。
作者:liuziwei@ceri.com.cn 发表时间: 2020-04-24 10:23:59 阅读(2064) 评论(0)

2:[研发项目动态--产业化示范工程]科技新进展:基于激光烟气分析方法的转炉智能炼钢系统

以数学模型为基础,通过大数据研究方法形成转炉冶炼过程控制系统的吹炼模型、加料模型和终点控制模型,形成一套转炉智能制造控制及仿真系统软件。控制系统通过流程输出端数据群能够自调整过程控制参数。控制及仿真系统利用过程监控数据具备自学习功能。 研究转炉智能制造技术的过程监控方法,通过炉气成分分析、音频化渣技术、副枪技术或倒炉取样以及下渣检测技术检验和修正模型。 在创新应用激光炉气分析技术的基础上,提高入炉原料供应标准,完善转炉基础数据信息在线检测技术,开发静态和动态智能控制模型、自动出钢技术,实现对转炉冶炼全过程的无干预智能化炼钢。
作者:高怀 发表时间: 2020-04-22 10:50:58 阅读(1180) 评论(0)

3:[成果转化与推广--冶金自动化与信息技术]炼钢厂智能优化调度系统

炼钢厂生产调度问题具有多路径、多干扰、多约束、多目标等特征,传统的方法难以适应复杂多变的现场环境,本技术研发了一种基于多智能体技术的炼钢厂生产仿真优化模型,把复杂的钢铁生产流程抽象为一个多智能体系统, 对复杂物流系统进行建模与仿真优化,解决了炼钢厂智能排产及动态调度问题,具有灵活、可扩展、适应性强的优点。
作者:lqy168 发表时间: 2020-04-08 09:23:19 阅读(3799) 评论(0)

4:[研发项目动态--国家科技支撑计划]科技新进展:大型转炉洁净钢高效绿色冶炼关键技术

长期以来,国内转炉技术更多借鉴国内外经验做应用优化,对转炉冶炼规律缺乏系统、针对性的研究,导致单工位单体技术和流程衔接技术开发不完善。更多的是单体工艺的优化或实验,被迫采用保守的冶炼工艺。尤其是大型转炉,其冶炼效率、洁净度水平直接影响了冶炼流程的低成本、高效率、洁净度、产品质量稳定性及节能环保状况,被迫采用较低复吹强度:顶吹强度 3.5Nm3 /t.min 以内,底吹强度0.06Nm3 /t.min 以内,冶炼时间长,冶炼终点氧含量高,炉渣氧化性和渣量大,有效复吹寿命小于 4000 炉,不能实现高洁净钢的稳定高效生产,已经成为我国钢铁行业转型升级时期炼钢水平和绿色化智能化进一步发展的限制性环节。
作者:高怀 发表时间: 2020-04-07 05:51:49 阅读(1569) 评论(0)

5:[成果转化与推广--炼钢工艺与技术]大型转炉洁净钢高效绿色冶炼关键技术

长期以来,国内转炉技术更多借鉴国内外经验做应用优化,对转炉冶炼规律缺乏系统、针对性的研究,导致单工位单体技术和流程衔接技术开发不完善。更多的是单体工艺的优化或实验,被迫采用保守的冶炼工艺。尤其是大型转炉,其冶炼效率、洁净度水平直接影响了冶炼流程的低成本、高效率、洁净度、产品质量稳定性及节能环保状况,被迫采用较低复吹强度:顶吹强度3.5Nm3/t.min以内,底吹强度0.06Nm3/t.min以内,冶炼时间长,冶炼终点氧含量高,炉渣氧化性和渣量大,有效复吹寿命小于4000炉,不能实现高洁净钢的稳定高效生产,已经成为我国钢铁行业转型升级时期炼钢水平和绿色化智能化进一步发展的限制性环节。 本技术解决了高洁净钢冶炼过程效率低、耗散大、不稳定、转炉有效复吹寿命低等世界难题,建立了转炉洁净钢高效、绿色、低成本、长寿、稳定生产的多目标高效协同体系。
作者: 发表时间: 2020-04-07 05:18:12 阅读(4535) 评论(0)

6:[成果转化与推广--炼钢工艺与技术]二氧化碳在炼钢过程的资源化利用技术

钢铁工业是CO2排放大户,2018年我国钢铁行业CO2排放量占国内工业CO2排放总量的16%,达18亿吨。寻求钢铁流程CO2减排或资源化利用,实现低排放和高洁净的炼钢生产,是钢铁工业实现“绿色质造”的必然选择。 2004年,研发团队依托“十二五”国家科技支撑计划及企业支持,开启了实现CO2资源化利用的应用研究。发明了具有自主知识产权的炼钢喷吹CO2降尘、高效脱磷、脱氮/控氧及长寿底吹等技术,完成了CO2资源化应用的工业示范及推广。
作者:高怀 发表时间: 2020-03-31 09:50:55 阅读(4362) 评论(0)

7:[成果转化与推广--冶金自动化与信息技术]基于大数据技术的数字化板坯

把所有的炼钢数据和板坯质量信息进行关联,能够更好地提升现场生产和工艺人员的工作效率,集成在内分析辅助工具能够更快速准确地提升分析能力。 以板坯为索引,把炼钢数据和板坯质量信息进行关联,通过板坯号就能够直接获取其各位置对应的生产过程数据、板坯质量信息。并提供统计分析工具,对不同类别、不同质量结果的板坯进行快速分类和分析。
作者: 发表时间: 2020-03-27 05:23:50 阅读(1642) 评论(0)

8:[成果转化与推广--连铸新技术]连铸中间包吹氩冶金关键技术

钢水洁净度和可浇性对钢的质量和材料性能有重大影响,是国内外冶金界重点研究课题,是炼钢工艺控制的重点和难点。吹氩是国内外提高钢水洁净度和可浇性常用的炉外精炼手段,LF、RH、VOD、VD等以钢包为基本容器的炉外精炼技术得到长足的发展,以中间包为基本容器的吹氩冶金技术的应用效果不理想,亟待突破。 目前国内外连铸中间包吹氩技术主要有透气上水口吹氩、塞棒吹氩和条形气幕挡墙吹氩。项目立项研发时,因钢水洁净度和可浇性差造成的连铸机浇注超低碳铝镇静钢的水口结瘤及其引发的铸坯质量缺陷,是国际冶金共性技术难题,国内外普遍采用透气上水口吹氩和塞棒吹氩,存在的主要问题:如图1所示,随着透气上水口的透气面黏附和沉积夹杂物,抑制水口结瘤的作用逐步失效,导致连铸机被迫停浇、连浇炉数低,而塞棒吹氩形成的氩气泡被卷入钢流中,部分氩气泡进入结晶器中来不及上浮,易造成铸坯皮下气泡缺陷;
作者:wys@csm.org.cn 发表时间: 2020-03-27 10:55:55 阅读(1711) 评论(0)

9:[成果转化与推广--冶金自动化与信息技术]钢铁企业智能制造大数据质量分析系统

本项目首次利用大数据及人工智能技术,突破了传统IT信息化系统框架结构、技术水平、适用领域等局限性,研发了一套适用钢铁企业全流程、全工序、全产品的质量分析管控平台,并应用于钢铁生产最为复杂的炼钢和轧钢工序,以现代质量管理方法为基础、以信息化系统为手段、以智能制造为主导,实现生产可管控、异常可预警、过程可追溯、缺陷可诊断、能力可评价、质量可预测、研发可推理。运用全面质量管理工具,辅助技术人员确保产品质量的稳定性,持续提升产品质量,不断提高顾客满意度和企业竞争力。 总体技术路线是利用大数据技术抽取及存储生产现场的所有生产信息、控制信息、工艺过程数据、能源介质数据、设备运行数据以及各种计质量装置等检测数据,形成完整统一的基础数据平台,然后以数据为基础,完成全流程、全工序的生产过程质量数据监控与告警、过程质量追溯、质量分析与建模、过程质量评价、工艺标准库管理、质量报告及统计分析报表,系统分析组件,系统配置管理等功能。
作者:wys@csm.org.cn 发表时间: 2020-03-27 10:34:47 阅读(1760) 评论(0)

10:[成果转化与推广--炼钢工艺与技术]超薄带铸轧技术

从上世纪90年代开始,美国、欧洲、日本及韩国等国家着手开发薄带铸轧技术,相继建立了实验机组,主要技术代表为CASTRIP、EUROSTRIP、POSTRIP等,直到2002年美国纽克钢铁公司第一条CASTRIP®薄带铸轧生产线生产出厚度为0.85~1.85mm超薄带钢,薄带铸轧才真正从实验阶段开始进入工业化生产阶段。而其它铸轧技术主要存在铸带表面质量差、生产稳定性差、制造成本高等问题。 2015年9月京诚公司启动了本项目的研发,提出了总体目标:形成包括工艺设计、装备制造、工程建设和产品生产在内的,具有完整自主知识产权的薄带铸轧生产线产品,技术成果为加速和真正实现薄带铸轧生产线产业化提供工艺装备技术保障及相关工程建设支持。 通过本研发项目,首创了我国能满足工业化生产的超薄带铸轧技术生产线国产化技术与装备,并达到国际领先水平。除部分设备外,其余部分均由国内设计供货(外方仅提供了相应的生产工艺要求和基本数据)。本项目联合炼钢、轧钢专业,针对外方提供的资料,仔细分析判别,有选择的消化吸收,并结合自身优势技术成功地开发了一系列的超薄带铸轧工艺技术、装备技术,取得专利成果十余项。
作者:wys@csm.org.cn 发表时间: 2020-03-25 10:58:57 阅读(2123) 评论(0)

第4页/共10页 上一页  1  2  3  4  5  6  7  8  9  下一页   末页    

中国金属学会 版权所有2013 Tel:010-65133322-1612 京ICP备06036139号-4