个人中心  用户登录  用户注册
检索条件
搜索范围     关键字     每页显示条数
开始时间   结束时间        
搜索结果如下(共48条):

搜索范围:全部 ;关键字:带钢;搜索位置:无限定;

1:[研发项目动态--产业化示范工程]科技新进展:数据驱动融合机理的热连轧三维尺寸数字孪生模型 与CPS系统应用

通过对国内近百条热连轧生产线的过程控制模型精度和产品质量指标研究发现,造成非稳态过程难以控制的原因,既有板带材轧制本身的工艺因素,又受制于热连轧自身的控制特点,长期面临如下突出问题: (1)热连轧各机架存在着弹性变形和塑性变形的交叉耦合作用。热连轧各机架与带材直接接触并产生压下量时,轧机设备会发生弹性变形,轧件又会发生塑性变形,这种设备弹性状态和带钢压下产生的塑性状态耦合到一起,导致传统数学模型很难对其进行精准计算和表述,尤其在频繁换规格或换钢种状态下,一种弹塑性耦合状态下的模型未完自学习至最优状态,又会过渡到另外一种弹塑性状态,导致整个机组形成长时间的非稳态过渡过程。 (2)非稳态过程难以建立高精度的热轧数学模型。该过程具有不确定性、非线性等特点,存在润滑状态、设备工况等多种多样难以表述的变化,这些对薄带材轧制的影响远超过普通带材。而实际控制过程采用的单一常参数模型难以满足连续变化的要求,模型匹配性差,实际生产过程中轧制力、前滑等关键参数存在很大偏差。 (3)多工序间的过程控制参数波动的影响。热连轧生产过程装备由加热炉、定宽压力机、粗轧机组、精轧机组、控制冷却及卷取机组等多个区域组成,各个工序均具有非线性、快响应以及时变、不确定性、工艺控制模型复杂、过程变量维数高、规模大等特点,这就决定了各个工序的建模过程比一般的工业过程复杂得多。这种非稳态下的过程参数波动,均可对下游工序产生很大的影响,从而导致产品质量问题,如板形、尺寸精度以及工艺性能等。 针对热连轧制造领域内过程精准控制科学问题和相关技术瓶颈,2019年河钢集团有限公司、华为、东北大学在深圳举行联合组建“工业互联网赋能钢铁智能制造联合创新中心”签约挂牌仪式。三方成立的联创中心将作为钢铁行业工业互联网与智能制造产学研用平台,以钢铁全流程产线为基点,着力实现网络化、数字化、智能化的新钢铁,促进钢铁产业转型升级、高质量发展。 项目团队依托河钢邯钢公司邯宝2250mm热连轧生产线,基于现有自动化与信息化系统,深度融合数据驱动模型与机理模型,首次开发了热连轧过程动态数字孪生模型并建立了CPS控制系统平台,提高了轧制工艺对复杂多变工况的原位分析能力,改善了热连轧过程三维尺寸控制指标。
作者:高怀 发表时间: 2022-08-02 01:38:55 阅读(789) 评论(0)

2:[研发项目动态--产业化示范工程]科技新进展:汽车用高性能复相钢制造关键技术及应用

复相钢通常包含两类产品,其中冷轧复相钢主要用来制造对刚度、强度、耐撞性等要求极高的门槛、保险杠、座椅滑轨等安全结构件,热轧复相钢主要用来制造对成形及疲劳要求更高的控制臂、纵臂等底盘核心承重部件。近年来,国内钢铁企业借助于热轧产品升级及冷轧高强产线能力提升,积累了一定的复相钢生产开发经验,但国内外复相钢还存在一些难题尚未有效解决,主要包括: 1、传统热轧复相钢采用微合金成分体系设计,通过卷取温度控制相变,从而获得铁素体+贝氏体+残余奥氏体等复相组织。但是扩孔率与伸长率具有负相关性,同时满足高扩孔性(≥40%)、高拉延性(≥12%)要求存在技术矛盾,如国际知名高端品牌某复杂成形零部件时因伸长率低和扩孔性能不足造成的冲压开裂率高达4%。且在传统控制冷却思路下,相同终轧/卷取温度而不同冷却路径时组织差异较大,导致扩孔率及伸长率波动大。 2、传统冷轧复相钢采用“高碳成分+高温退火”获得少量铁素体+贝氏体+马氏体+少量残余奥复相组织。但高温加热及快速冷却容易造成温度不稳定,从而造成材料性能的波动。且高碳复相钢存在带状组织,对折弯要求较高的零件适用性一般,如某国际知名一级配套商用进口材加工某零件时折弯开裂率高达8%,难以满足门槛、滑轨等零件高折弯性能的成形需求。 3、超高强复相钢冷轧生产时变形抗力起点值高,极限厚宽规格轧制负荷极大,导致带钢板形问题突出。如国外某先进钢企极限厚宽规格热镀锌复相钢仅可实现平直度5mm/2000mm,因板形不良导致最终零件空间尺寸合格率仅有90%,严重影响了门槛等零件的装配精度及碰撞安全。 4、超高强度复相钢零件生产过程中翻边、扩孔等涉及边部成形工序较多,极易引发冲压边裂质量问题。因边部裂纹敏感性和零件冲压边裂的预测技术还不完善,缺乏边部裂纹敏感性评价体系及相应的材料解决方案,典型零件冲压边部开裂率达到5%。目前国际上往往被迫采用改良模具或采用激光切割的方式解决此类问题,加工成本显著提高。 首钢通过扩孔/拉延协同控制和材料局部成形的机理创新,提出组织调控新思路,实现复相钢综合力学性能提升;通过轧制工艺、退火工艺、板形控制工艺等创新,实现复相钢性能稳定性、极限规格产品板形质量的提升,在上述机理创新和工艺创新的基础上,最终实现高性能复相钢的稳定生产。
作者:高怀 发表时间: 2022-05-19 09:24:25 阅读(726) 评论(0)

3:[科技成果评价--冶金自动化与信息技术]冷轧带材整辊无线式板形仪和智能板形控制系统

板形检测与控制是带钢冷轧机的核心关键技术,是我国钢铁工业智能化急需解决的重大技术难题。为打破国外垄断,消除“卡脖子”隐患,在国家科技支撑计划支持下,该项目历时10余年,自主创新研制了整辊无线式板形仪和智能板形控制系统,并成功进行了一系列工业应用。 第一项创新:提出板形检测信号解耦机理模型,研制整辊无线智能型板形仪,实现高精度检测。在建立通道耦合与信号解耦机理模型的基础上,研制整辊无缝密排传感器板形检测辊,提高辊面质量,实现同步精确测量。采用无线数字通讯技术,研制无线式板形信号传输装置,提高稳定性、可靠性和使用寿命。建立误差补偿模型,研制板形信号计算机处理系统,实现智能精准检测。 第二项创新:提出板形分量控制方案和动态解耦控制模型,研制多手段协同板形控制系统,实现高精度控制。根据相对增益理论,将复杂的板形控制系统分解为对称板形分量、非对称板形分量、局部板形分量等3个独立的控制子系统,简化控制器设计。根据解耦控制理论,分别建立3个分量系统动态解耦控制模型,研制倾斜轧辊、非对称弯辊、对称弯辊、横移轧辊、分段冷却等多手段协同的板形控制系统,提高控制性能。 第三项创新:提出板形控制机理智能协同建模方法,研制智能板形控制系统,实现高精度控制。根据轧辊带钢变形机理和轧制过程实测数据,分别建立机理模型控制方案和智能模型控制方案,然后加权结合,制定精确的控制方案。为补偿板形检测大滞后,研发机理智能板形预测控制技术,提高控制精度。 该项目获授权发明专利20项、计算机软件著作权10项,主持制定国家标准2项,发表论文65篇。该项目板形检测分辨力0.2I,板形控制精度4-6I,闭环控制周期100ms,3项技术指标好于国外先进水平(0.5I,8-10I,200ms)。技术装备价格是国外的30%,每套节约投资1000万元。提升了我国冷轧带钢板形测控技术的国际竞争力。 该项目整体技术已应用于鞍钢1780mm五机架冷连轧机和马钢1720mm、河钢1550mm等12套带钢(材)冷轧机,节省投资1.2亿元,近3年新增销售额119亿元,新增利润11.3亿元。带钢(材)板形从普通精度提升到高级精度,用于红旗奔驰奥迪和格力海尔、华为手机和5G设备等高级汽车家电、电工电子板,顶替进口,出口美欧日韩。提升了我国冷轧带钢质量和轧机装备智能化的国际竞争力。
作者:wangdongcheng 发表时间: 2022-01-11 08:42:39 阅读(1354) 评论(0)

4:[研发项目动态--产业化示范工程]科技新进展:大型带钢冷连轧机整辊无线式板形仪和智能板形控制系统

目前,国际流行的冷轧带钢板形测控系统存在的主要问题是:(1)板形仪辊面质量和检测精度不够高。分段压磁式板形仪辊面有缝,可能会压伤和划伤带钢表面。整辊压电式板形仪的传感器分散螺旋布置,不能对横向板形实现同步测量。(2)碳刷滑环式板形信号传输装置,易受摩擦磨损振动和电磁温度等干扰,运行维护困难。(3)整辊式板形仪存在通道耦合问题,影响检测精度。(4)板形分析计算和控制器设计模型都是静态的,不能实现动态预报和解耦。(5)板形控制建模的智能程度和计算精度低,影响控制系统性能。 为打破国外垄断,实现用自主国产板形测控系统装备带钢冷轧机,生产高级冷轧带钢,在国家科技支撑计划、863计划、国家自然科学基金和校企合作的支持下,燕山大学国家冷轧板带装备及工艺工程技术研究中心刘宏民教授团队针对上述科技问题,历时10余年自主创新研制了整辊无线式板形仪和智能板形控制系统,并成功应用于鞍钢1780 mm五机架冷连轧机和马钢1720、河钢1550等12套钢带、铜带、铝带冷轧机组,替代进口,实现了大型带钢冷连轧机板形测控系统的首台套国产化和冷带轧机板形测控系统的规模化应用。
作者:高怀 发表时间: 2022-01-11 08:39:05 阅读(732) 评论(0)

5:[科技成果评价--冶金环保技术]ESP无头轧制技术在日钢碳达峰碳中和的 大规模应用实践与创新

本项目ESP无头轧制技术在日照钢铁控股集团有限公司得到大规模工业化应用,在ESP技术开发、产品应用及节能减排方面取得了多项国际领先指标。产品形成超薄超宽、高尺寸形状精度、高性能、高成材率、高均一性、高表面质量及低成本的优势和特色。共生产了高质量薄/超薄宽带钢2806万吨,减少能耗235.7万吨标煤,减少CO2排放613万吨;并使相关下游产业在提高成材率、“以热代冷”、结构轻量化、降低成本等方面增效显著,经济、社会效益及环境效益十分显著。
作者:tpchbr 发表时间: 2021-11-12 08:33:47 阅读(1193) 评论(0)

6:[研发项目动态--产业化示范工程]科技新进展:高品质冷轧带钢精整核心装备及关键技术开发与应用

精整生产线是板带从钢厂走向用户的关键环节,在钢铁工业生产中起着举足轻重的作用,是成品板带质量的最终保障。项目开展前,高品质冷轧带钢精整生产装备与关键技术主要掌握在德国西马克、日本三菱、奥地利安德里茨等国外几大钢铁集团手中。国内现有的精整工艺技术很难满足高品质冷轧带钢产品生产的质量要求,成材率与机组产量均很低,没有形成系统性的工艺控制理论,且现场仍然以经验控制为主,导致高品质冷轧带钢的边部质量、板形以及表面质量等指标与国际水平仍存在很大差距。精整装备与工艺的不足严重限制了机组产能与产品质量,更谈不上高品质稳定生产。如何攻克精整生产线的设备与工艺难题就成为解决高品质冷轧带钢产品生产技术瓶颈的关键所在。 针对国内精整装备与工艺现状,燕山大学联合中国重型机械研究院股份公司、宝山钢铁股份有限公司、唐山钢铁集团有限责任公司,以实现高品质冷轧板带高效稳定精整生产为目标,立足高品质冷轧带钢精整成套装备与生产关键技术国内自主设计与开发,从带钢边部质量控制、带钢板形与表面质量控制、拉矫及上下游协同控制三方面入手展开研究,历经十余年持续攻关,突破了高品质冷轧带钢精整生产生产关键装备与技术瓶颈,形成了自主知识产权,最终实现了高品质冷轧带钢高效稳定工业化生产。
作者:高怀 发表时间: 2021-10-11 09:11:35 阅读(1009) 评论(0)

7:[科技成果评价--冶金环保技术]ESP无头轧制技术在日钢碳达峰碳中和的 大规模应用实践与创新

本项目ESP无头轧制技术在日照钢铁控股集团有限公司得到大规模工业化应用,在ESP技术开发、产品应用及节能减排方面取得了多项国际领先指标。产品形成超薄超宽、高尺寸形状精度、高性能、高成材率、高均一性、高表面质量及低成本的优势和特色。共生产了高质量薄/超薄宽带钢2806万吨,减少能耗235.7万吨标煤,减少CO2排放613万吨;并使相关下游产业在提高成材率、“以热代冷”、结构轻量化、降低成本等方面增效显著,经济、社会效益及环境效益十分显著。
作者:tpchbr 发表时间: 2021-10-09 03:05:44 阅读(1294) 评论(0)

8:[研发项目动态--产业化示范工程]科技新进展:高效薄带铸轧稳定化生产关键技术创新及应用

当前限制薄带铸轧技术进一步发展的瓶颈主要有四个方面: 1.生产稳定性差,核心技术指标偏低,生产成本高。薄带铸轧产线是将钢水到带钢卷取集合在一起的连续性产线,其中一个环节出问题,整个生产过程就要中断,尤其是在铸区,对钢水质量、耐材质量、工艺控制等要求非常高。纽柯公司Castrip产线计划完成率不到80%,连浇炉数不足4炉,成材率也不到90%,这导致其生产成本较高,产品竞争力不强。 2.薄规格产品比例低,技术优势未充分发挥。薄带铸轧技术可直接铸出2.0mm以下厚度的铸带坯,易于实现薄规格产品生产,同时单机架轧制也利于板型控制。但在集中生产薄规格产品时,单道次轧制压下率大,导致板型控制困难。 3.工艺优势未充分利用,特色品种少。薄带铸轧亚快速凝固的优势,可消除易偏析元素含量高的钢种在凝固过程中的偏析,从而充分利用相应元素的有利作用。但部分元素对于凝固过程和相变过程的影响,会导致钢水稳定成带困难、带钢易出现表面微裂纹等问题,因此此类产品一直未能量产。此外,利用薄带铸轧过程强化元素特殊的物理冶金规律表现,以及短氧化过程的特点,可开发具有显著成本优势和良好使用性能的产品。但技术引进时纽柯公司Castrip产品主要是结构用低碳钢和低合金高强钢,在特殊钢种的开发和推广应用方面一直没有涉及。 4.设备由国外供应商提供,采购成本高,部分设备使用效果不理想。薄带铸轧产线流程短、工序紧凑,在很短距离内工艺控制点多,设备要求高,目前产线设备只能由国外少数供应商供应,价格高且供货及时性难以保证。 以上这些问题导致薄带铸轧生产成本高、产品品种少、应用面窄、产品竞争力相对较差,严重影响了薄带铸轧技术的推广和应用。薄带铸轧技术如何实现从“可以生产”到“稳定高效生产”的突破已成为钢铁行业亟待解决的难题。
作者:高怀 发表时间: 2021-09-13 09:45:17 阅读(2031) 评论(0)

9:[研发项目动态--产业化示范工程]科技新进展:ESP技术的创新及应用

薄板坯连铸连轧技术的出现,适应了这种客观形势的需要,是近30年来世界钢铁工业取得的重要技术进步之一,是继氧气转炉炼钢、连续铸钢之后,又一项带来钢铁工业技术革命的新技术。CSP轧机上的生产工艺研究和生产实践上取得了显著成果,并在国内某些厂家实现了半无头生产模式,在提高产品的厚度精度、板形质量、通卷组织性能稳定性、均匀性和成材率方面体现出显著的优势。但面对钢铁产能过剩,特别是热轧板卷严重过剩的现实,此类薄板坯连铸连轧产线面临着传统产线日益严峻的挑战,需要进一步开发全无头轧制技术,从而更大程度发挥流程优势、增加产品的附加值、降低产品的制造成本并增加生产过程的环境友好性。2009年2月意大利Arvedi无头轧制技术(ESP)投入工业化生产,标志着连铸连轧技术的又一次进步。基于此,2015年,日照钢铁率先引入亚洲第一条,世界第二条薄规格无头轧制生产线。 无头轧制的优势有:1)节能效果显著:同传统热连轧比较,节能40~60%;2)大规模生产高质量薄/超薄宽带钢,实现“以热代冷”;3)带钢高性能均一性、高尺寸形状精度(传统工艺无法实现);4)成材率比传统工艺提高1%以上(高成材率,低氧化烧损、无切损);5)吨钢生产成本低,产线投资低。 同时无头轧制生产也存在以下难点:1)产线高拉速、高刚性(无缓冲)、多工序装备一体化集成控制;2)单浇次连轧数千吨薄宽带钢生产组织、质量控制、带出品最低化、事故控制处理等远大于传统工艺。同时ESP生产技术在引进过程中,因国内无可参考技术,生产中发现与理想状况还存在较大差距。为解决ESP产线存在的技术瓶颈问题,日照钢铁联合国内知名高校和科研院所,不断调整思路,优化试验方案,对存在问题逐一分析,开发出ESP线多炉高拉速连铸无缺陷铸坯控制技术、薄规格带钢板形稳定控制技术、基于ESP产线的铁素体轧制工艺技术、超薄宽带钢系列产品的ESP工艺技术等,形成世界规模最大的低碳节能效果显著的高质量薄宽带钢短流程生产基地。。
作者:高怀 发表时间: 2021-09-09 09:18:33 阅读(1756) 评论(0)

10:[研发项目动态--产业化示范工程]科技新进展:1780mm冷连轧机组交直交传动系统的研发和应用

宽带钢薄板冷连轧机组是冶金生产流程的高端装备,轧钢技术复杂、设备控制先进,是一个国家钢铁工业发展水平的重要标志。其要求高速轧制、多机架速度带张协调、厚度及板形的高精度控制,需要通过轧机传动的速度控制、五机架的速度协调以及辊缝调节来保证带钢金属秒流量相等、带钢张力恒定,故冷连轧机组高速运行下速度调节精度、动态响应时间直接影响产品质量和轧制过程的稳定性。 随着轧钢技术的发展及中高端客户的不断提升,宽带钢薄板冷连轧机组生产工艺要求更薄的带钢产品(<0.2mm),更高的产量(即更高的轧制速度),更好的板形质量,所以要求传动速度、带钢张力、轧机厚度AGC和弯辊窜辊等必须高度协调,这就要求其电气传动系统要具有大功率(5-7MW)、高转速(大于1000rpm)、高精度(<0.01%)和高动态响应(<5ms)的技术性能,大型冷连轧机组传动系统一直被认为是电气传动技术的最高台阶。 河钢邯钢依托和响应国家大型装备国产化的科技政策,对冷轧机传动的核心功率模组国产化替代、IGCT保护等难题进行了深入研究并取得部分成果,为进一步突破核心技术,又联合深圳市禾望电气股份有限公司、冶金自动化研究设计院、北京首钢公司成立了“1780mm冷连轧机组交直交传动系统的研发和应用”项目组,共同针对邯钢1780mm宽带薄板冷连轧机组大功率交直交变频调速技术进行攻关,在国内首次自主研制了冷连轧交直交变频调速系统并成功应用,实现了冷连轧机组交直交变频传动核心部件及成套装备的国产化。
作者:高怀 发表时间: 2021-09-06 03:25:22 阅读(755) 评论(0)

第1页/共5页  1  2  3  4  5  下一页     

中国金属学会 版权所有2013 Tel:010-65133322-1612 京ICP备06036139号-4