个人中心  用户登录  用户注册
检索条件
搜索范围     关键字     每页显示条数
开始时间   结束时间        
搜索结果如下(共166条):

搜索范围:全部 ;关键字:优化;搜索位置:无限定;

1:[研发项目动态--产业化示范工程]科技新进展:基于板形调控功效的多变量最优板形控制 研究与应用

薄带材冷轧过程具有控制参数多、响应时间短及精度要求高的特点,其质量控制水平代表着一个国家钢铁工业的技术水平,可谓是钢铁技术领域的“皇冠”。对于冷轧板形控制而言,其控制过程存在多变量、时变性、大滞后及非线性等特点,全球仅有几个国家掌握相关技术,可谓是“皇冠上的明珠”。随着国民经济的快速发展,汽车、家用电器、电子和航空航天等行业对冷轧带材产生了巨大的需求,同时也对其板形质量提出了更高的要求,如何进一步提高冷轧带材的板形控制精度,是从事冷轧领域技术研究人员需要面对的重要课题。 针对板形控制模型与轧制过程的失配问题,研究将仿真建模、机理建模、知识工程推理与过程数据进行融合建模的理论与方法。通过研究串联结构形式的板形混合建模方法,提高板形控制模型对轧制过程的适应能力,并建立相适应的板形前馈与反馈控制系统间的协调优化控制策略。通过本项目的实施,可为冷连轧过程板形控制精度和稳定性的提高带来新的思路,对于其它复杂工业优化控制过程具有一定的理论参考意义。
作者:高怀 发表时间: 2022-10-12 11:33:02 阅读(1536) 评论(0)

2:[研发项目动态--产业化示范工程]科技新进展:基于风量优化和返矿分流工艺的高效烧结关键技术

这些年,在烧结工艺不断完善的背景下,进一步提产的空间不大。如果烧结面积和风机大小不变,则提高烧结效率即提产的关键在于提高烧结料层的透气性和优化料层的风量分布。对于料层透气性,提出了返矿分流工艺来进一步提高料层透气性。传统上烧结返矿均经过配料室、一混和二混的工艺流程。21世纪初,针对矿粉资源粒度的细化,日本东北大学葛西荣辉提出了镶嵌烧结的概念,以此提高料层的透气性,但是由于镶嵌物质强度等原因,该理念一直未能工业化。2008年后日本住友(现属于新日铁)开始逐步实施了返矿镶嵌工艺。项目组对该工艺跟踪和调研后,认为其在两方面可进一步优化,以进一步提高烧结效率和改善质量,一是其返矿镶嵌的粒度不易控制,二是镶嵌的返矿粒级偏细。 对于烧结风量分布,除了长期存在的烧结机漏风高的问题,前人对于烧结机长度方向,即前、中、后区域的适宜风量分布未有充分研究,关于烧结机宽度方向风量不匹配问题的研究也较少。烧结靠燃料与风的反应来进行,如何通过强化措施优化风量分布,对于烧结提产降耗有重要意义。 基于中天钢铁烧结自身,提高烧结矿产量、减少外购球团矿配比,从而降低高炉炉料成本一直是近几年工作的目标。在这个背景下,项目组围绕烧结返矿分流和风量优化开展了一系列攻关研究。在攻关前,北区180m2烧结的上料量(不含内返矿)在280t/h水平,折算系数在1.55水平,期望通过技术攻关,上料量能在325t/h,折算系数能提到1.8水平,提产15%以上;预计北区180m2双机通过技术创新实现烧结矿年增产57万吨,替代外购高价球团矿的效益显著。
作者:高怀 发表时间: 2022-09-20 05:20:10 阅读(773) 评论(0)

3:[研发项目动态--产业化示范工程]科技新进展:铁工业煤气发酵法制生物乙醇及梭菌蛋白系统工艺集成研究及其工业化应用

钢铁工业煤气生物发酵法制燃料乙醇新技术使用的菌种为乙醇梭杆菌,是一种严格厌氧细菌,因此对原料气需要进行除氧处理,气体中的苯、萘、焦油、氰化氢、乙炔等均会影响菌体健康生长。保持菌体健康是发酵过程连续稳定运行的先决条件,因此需要通过研究钢铁工业煤气组分特点,优化气体预处理工艺设计及催化剂选型,确保发酵进气得到有效净化。 发酵反应过程在生物反应器中进行,菌体与气体充分接触,吸收气体中的CO并在微生物菌体代谢反应下转化为乙醇等代谢产物,同时实现菌体持续的增殖。CO利用率、乙醇浓度、乙醇产率等参数是影响项目成本及能耗的关键指标,通过研究搅拌速度、气体分布、CO供给等对CO利用率及代谢产物分布的影响,提高CO利用率、乙醇浓度等发酵性能指标。 本项目采用连续发酵工艺,持续的排出含有菌体及乙醇等代谢产物的醪液,发酵醪液中含有大量的菌体蛋白,经提取乙醇后的含菌余馏水如直接排入污水,高含量的菌体蛋白将会使污水系统无法运行。根据菌体蛋白特性,选择分离干燥工艺,开发菌体蛋白的高价值应用,将有助于降低后续污水处理负荷,同时通过回收副产品提高经济效益。 发酵工艺是一种需要在液体环境下进行的高耗水工艺,研究蒸馏余馏水及污水处理后中水回用对发酵性能及代谢产物积累的影响,实现高比例水回用,将有助于降低水及化学品消耗,降低污水处理负荷,进而降低生产成本。 通过以上研究,打通从原料气预处理、发酵、蒸馏脱水、菌体蛋白分离干燥、煤气处理、污水处理等全系统工艺流程,实现高性能发酵及产物高效提取,解决废水处理难题,形成循环化系统集成工艺,并在此基础上建立全球首套钢铁工业煤气发酵法制生物乙醇工业化示范装置,将工业煤气发酵技术从实验室技术转化为工业化应用。
作者:董鹏莉 发表时间: 2022-07-01 05:01:47 阅读(900) 评论(0)

4:[研发项目动态--国家重点研发专项]科技新进展:浓盐水双极膜电渗析制酸碱资源化回用新技术

浓盐水是钢铁企业采用超滤-反渗透工艺制备脱盐水产生的尾水,无机盐和有机物含量高,处理难度大,缺乏经济有效的处理措施。目前一般采用蒸发浓缩工艺得到混合无机盐,或分盐后蒸发结晶制备氯化钠和硫酸钠产品,但存在产生的固体盐无合适的消纳渠道、运行成本高等问题。浓盐水如何高效处理回用是目前制约钢铁企业绿色发展的瓶颈问题。 针对钢铁浓盐水资源化处理回用难题,开展臭氧界面活化机理、膜表面污染机理等基础理论研究,开发深度催化臭氧氧化、高效纳滤分盐、抗污染电渗析膜浓缩、电渗析双极膜再生酸碱等核心关键技术、配套催化剂、膜材料及设备,通过中试实验论证技术方案,并根据实际水质进行深度除杂和单元工艺组合优化,开发出最优集成工艺,最终在河钢邯钢建成产业化示范工程,实现浓盐水再生酸碱资源化回用。
作者:董鹏莉 发表时间: 2022-07-01 04:40:28 阅读(701) 评论(0)

5:[研发项目动态--国家重点研发专项]科技新进展:基于机器视觉的宽厚板轮廓及板形CPS智能制造技术 研发与应用

通过对国内近百条中厚板生产线的工艺技术装备现状研究发现,产线普遍在关键工艺质量参数感知、多工序协调优化方面,长期面临如下突出问题: 1、生产过程中轧制、剪切等工序的自动化达到较高水平,但是各工序控制系统相对孤立,尚未形成联动,部分工序缺失关键质量参数,不能基于反馈进行动态优化控制,机理模型的预测和控制精度低,严重影响产品质量、生产效率和成材率的提升; 2、缺少钢板轮廓识别和板形检测关键大型仪表,导致轧后钢板头尾形貌、轮廓和板形等关键质量参数难以在线精准识别,仍以人工方式线下测量,无法与轧制过程形成在线反馈控制,难以通过在线工艺优化来保证最终产品质量; 3、依靠人工经验的传统组板系统订单匹配度低、精准剪切控制能力偏低,无法根据钢板实时轮廓信息优化组板策略导致组板余材过多,影响生产效率和成材率。剪切工序也无法根据实时轮廓形状优化剪切策略。此外,剪切工序与轧制过程、组坯过程除基础的产品信息交互之外,无其它过程质量数据交互,迫切需要将轧后钢板实际轮廓形状与订单合同进行实时动态匹配,急需开发面向多目标约束的优化剪切和动态组板策略,以实现减少切损的同时提高订单的匹配度。 针对宽厚板制造领域内过程精准控制科学问题和相关技术瓶颈,2010年由山钢与东北大学等单位组建联合研发团队,在国家十三五重点研发计划《基于CPS架构的多工序协调优化与质量精准控制及应用示范》(2017YFB0304103)项目和山东省《宽厚板智能轧制数字化车间是的试点示范》项目的支撑下,依托山东省山钢王国栋院士工作站科研平台,深入推进开展产学研合作和协同创新,发挥高校基础研究理论创新优势与企业产工程技术优势,联合开展本项目关键共性技术的科研攻关工作。
作者:高怀 发表时间: 2022-06-23 09:07:52 阅读(699) 评论(0)

6:[研发项目动态--产业化示范工程]科技新进展:大板坯连铸-轧钢界面高效化、绿色化关键技术 开发与集成应用

针对国内微合金化钢生产中存在的板带材表面质量缺陷,以及生产过程能耗高、成材率低、生产效率低的实际情况,钢铁研究总院在2015年9月首先与邯郸钢铁集团有限公司签订技术合作合同,共同开展宽厚板边直裂控制技术和微合金化钢红送裂纹控制技术的研究工作,并取得初步成效。 在此基础上,2017年7月由首钢集团有限公司联合邯郸钢铁集团有限公司、鞍钢股份有限公司、山西太钢不锈钢股份有限公司、新冶高科技集团公司等在微合金化钢生产中具有丰富实践经验和研究基础的单位,共同承担“十三五”国家重点研发计划中“钢铁流程铸-轧界面物质流与能量流协同优化及智能控制技术”课题的研究任务。以期在微合金化钢板带材生产关键技术方面取得突破,首先在国内建成集连铸坯表面无缺陷生产技术、边直裂控制技术、红送裂纹控制技术等为一体的大板坯连铸-轧钢界面高效化、绿色化关键技术集成应用示范生产线,并向钢铁企业进行工程化推广,使连铸坯真正成为物质流、能量流、信息流的载体,被直接输送到下一步轧制工序,彻底打通和捋顺铸-轧界面,为下工序高效率、绿色化、高质量生产奠定坚实的基础。
作者:高怀 发表时间: 2022-06-13 10:11:36 阅读(901) 评论(0)

7:[研发项目动态--产业化示范工程]科技新进展:冷热卷余材跨工序智能充当系统

针对钢铁长流程加工过程中余材种类多、余材数量大、库存控制难等典型问题,宝钢股份于2004年开始着手余材充当技术的研发,历经十几年的探索创新,建立了以规则配置平台和优化决策模型双轮驱动的余材充当系统,逐渐具备了薄板全产品、全工序、全产线的优化充当能力,实现了经济价值和劳动效率的大幅度提升。数年来该技术水平在覆盖面、优化效果、自动化程度、工艺数字化全方位持续保持国际领先。
作者:高怀 发表时间: 2022-06-13 10:11:07 阅读(798) 评论(0)

8:[研发项目动态--产业化示范工程]科技新进展:特种熔炼真空电弧重熔及电渣重熔过程 数值模拟仿真软件

宝钢研究院智能所于2013年及2016年先后开展了ESR及VAR熔炼仿真模型软件自主开发和应用研究。结合特钢冶炼设备和工艺,聚焦高温合金和钛合金特定品种的熔炼计算应用,成功研制了一款工艺参数优化的仿真软件,为特钢新产品研发和工艺改进提供了可自主的技术支持。
作者:高怀 发表时间: 2022-06-13 10:10:49 阅读(920) 评论(0)

9:[研发项目动态--产业化示范工程]科技新进展:大型高炉出铁场高效、环保耐材技术开发与应用实践

在高炉冶炼进程中,炉前作业是一个重要的环节,其主要任务是连续不断地将高炉内生成的渣铁从铁口排出,在主沟内渣铁分离后,高炉渣经渣沟进入渣处理系统,铁水流经铁沟和摆动溜槽进入鱼雷罐车运输至下道工序,保证高炉生产正常进行。炉前作业的主要场所为高炉出铁场,是除高炉本体之外最重要的高温区域,由出铁场平台、出铁口、主沟和渣铁沟、残铁沟、摆动溜槽和炉前除尘系统组成。宝钢高炉设有4个铁口分布在2个对称的矩形出铁场。出铁场由多种耐火材料组成,耐火材料性能决定了高炉的安全生产和正常运行。 目前具有近40年大型高炉操作经验、拥有9座4000m3以上大型高炉、大型高炉铁水年产能超过3300万吨的宝钢股份,经过多年技术研发及应用改进,出铁场耐火材料应用消耗水平总体保持在国内领先水平,但是还存在着很多薄弱环节,影响了出铁场耐材整体应用水平,给现场生产与环保造成了不少困难与安全隐患。 针对特大型高炉出铁场在出铁口和沟系统应用中存在主沟接头易钻渣渗铁、沟料施工烘烤时间长、采用沥青结合的出铁场耐材使用过程中产生可视环境污染、铁口区煤气火治理效果不佳影响铁口永久砖保护砖结构稳定、泥套损坏过快等技术难点,从现状问题着手,进行了损坏机理研究,产生改进方向,并试验出配套施工工艺,深入开展基础研究,提出解决方案后,以工业试验应用的方式验证、优化,取得显著的效果后,固化技术成果,形成大型高炉出铁场高效、环保耐材技术开发与应用技术,降低了劳动强度,消除了主沟接头处钻渣渗铁等事故,改善炉前作业环境和作业人员劳动强度。
作者:高怀 发表时间: 2022-05-20 02:16:18 阅读(657) 评论(0)

10:[研发项目动态--产业化示范工程]科技新进展:高铝钢及微合金钢板坯连铸关键技术开发与应用

随着国民经济发展和产业结构升级,高铝钢及微合金钢等高端钢铁材料广泛应用于汽车、能源电力、海洋工程、船舶等重点领域,高效连铸生产的技术质量问题日益凸显。如汽车用DP、TRIP钢因钢中Al含量高达1.0%以上,不仅难以实现多炉连浇,而且连铸板坯存在横向凹陷、裂纹、断坯等问题;高等级桥梁钢、高强钢、能源钢、管线钢等因添加Nb、V、Ti等微合金元素,热装铸坯轧后钢板表面容易出现裂纹。这些难题不仅影响生产效率,还会造成资源和能源浪费。此外,随着用户的个性化需求增多,微合金钢品种、规格、连铸短浇次增多,微合金钢连铸漏钢风险增大,直接影响高效连铸过程的稳定性。相对于普通钢材,高铝钢和微合金钢元素多且含量高,质量控制难度大、工艺复杂。原有的高效稳定工艺技术,已无法适应高铝钢和微合金钢生产需求,具体体现在: 1、高铝钢保护渣易反应变性,粘结报警频繁,连铸可浇性差,板坯表面裂纹多,必须下线清理。针对高铝钢板坯连铸,韩国浦项制铁开发了液态保护渣技术,将钙铝系保护渣加热熔化后流入结晶器,控制渣圈达到改善板坯表面质量的目的;国内也有企业直接采用低碱度、低熔点钙硅系保护渣或者直接采用钙铝系保护渣的成功先例。这些技术极大促进了高铝高锰钢的开发与应用,但均未实现常规拉速的多炉连浇。 2、Nb、V、Ti微合金桥梁钢、高强钢、能源钢、管线钢等高等级钢实现高温热装(两相区)难度大,钢板易产生红送裂纹。针对高等级微合金高强钢板的热装红送裂纹,国内外普遍采用板坯下线控温、专用淬火池及铸坯切割后淬火等方式,铸坯热量损失大,生产效率低,表层组织细化和抑制第二相粒子析出的效果不充分。 3、多品种、小批量、多规格的高品质钢连铸短浇次多、混浇坯长。混浇钢种成分差异大,混浇模型判定不准确,不得不下线取样化验,降低入炉效率;多断面板坯连铸,为避免漏钢结晶器在线调宽必须低拉速或者降拉速,降低了生产效率。 首钢与北京科技大学长期开展合作,进行高铝钢及微合金钢板坯连铸关键技术攻关。经过长期连铸工业实践和系统攻关,发现并揭示了高铝钢粘结报警及横向凹陷机理。从工艺上对结晶器振动、保护渣性能以及结晶器表面流动进行了优化,实现300吨钢包产线实现高铝钢([%Al]≥1.0)单浇次稳定浇铸1500吨以上。连铸拉速从0.8 m/min提高至1.2 m/min。
作者:高怀 发表时间: 2022-05-17 03:31:42 阅读(667) 评论(0)

第1页/共17页  1  2  3  4  5  6  下一页   末页    

中国金属学会 版权所有2013 Tel:010-65133322-1612 京ICP备06036139号-4