个人中心  用户登录  用户注册
检索条件
搜索范围     关键字     每页显示条数
开始时间   结束时间        
搜索结果如下(共434条):

搜索范围:全部 ;关键字:展;搜索位置:无限定;

1:[研发项目动态--产业化示范工程]科技新进展:稀土钢共性关键技术研究新进展

中国科学院金属研究所自建所之初就部署了稀土钢研究方向。2007年以来开展新一轮稀土钢研究,经过多年持续攻关,深入生产企业进行实地考察,通过大量实验室研究和工程化试验,揭示了纯净度尤其是氧含量对稀土钢性能提升的决定性作用,控制氧含量是实现高品质特殊钢“高纯、均质”的关键。受此启发,中国科学院金属研究所发现稀土金属本身的纯净度和稀土加入前钢液的纯净度,是影响稀土在钢中发挥有益作用和工业化生产工艺不稳定的关键因素。研究结果表明,稀土金属中即使含有几百ppm少量的氧,也足以使稀土在钢中的作用由正变负,而部分商业纯稀土中的氧含量甚至高达1000ppm以上。因此,稀土金属与钢水双纯净双低氧是稀土钢获得稳定应用的前提和基础。 基于此,中国科学院金属研究所研发了高纯稀土金属制备关键技术与钢水纯净度控制工艺,通过控制稀土原料中的氧含量、稀土加入前钢水中的氧含量和杂质元素,突破了生产工艺不能顺行和性能不稳定两大难题,成功细化夹杂物到亚微米尺度,制备出超高洁净度亚微米夹杂物的稀土钢。 稀土钢共性关键技术路线示意图如图1所示。中科院金属所通过优化设计炉体结构、优化调整工艺参数、防氧化浇注和防氧化储运等方式实现了高纯低氧稀土金属制备,稀土金属的全氧含量低于100ppm;同时,通过采取低氧纯净化冶炼、创新稀土加入工艺、控氧自动化浇注、低偏析微缺陷控制等手段实现了全流程低氧钢水纯净度控制,能够保障千吨级稀土钢连铸生产顺行,从而形成了稀土钢工业化应用共性关键技术,实现了稀土在钢中工业化应用的实质性突破。
作者:高怀 发表时间: 2021-10-21 09:44:50 阅读(1168) 评论(0)

2:[研发项目动态--产业化示范工程]科技新进展:均质化大锻件构筑成形技术

中科院沈阳金属所孙明月项目团队在长期从事大锻件材料与先进控形控性技术研究工作的基础上,借鉴建筑领域的“砌墙”原理,将传统的锻造与新兴的增材制造技术巧妙结合,在国际上率先提出了解决大尺寸材料偏析问题的构筑成形新思路:采用多块易于制备的小尺寸均质化的板坯作为基元,通过表面加工、清洁活化、堆垛组坯、真空封焊、高温锻造、多向变形等手段,获得大尺寸均质化材料。该技术兼具颠覆性、可操作性和经济性的特点,可有效解决大锻件制备过程中因铸锭凝固速度缓慢造成的“尺寸效应”问题,在显著提升大锻件冶金品质的同时,可提升材料利用率,吨钢制造成本降低30%以上。同时,还可实现压力容器等大锻件的一体化成形,减少容器焊缝数量约50%,显著提升结构的安全性、可靠性和装备建造进度。
作者:高怀 发表时间: 2021-10-21 09:44:40 阅读(1069) 评论(0)

3:[研发项目动态--产业化示范工程]科技新进展:热冲压钢高韧性AlSi镀层技术开发与应用

AlSi镀层技术完美地解决了1500MPa超高强度汽车安全结构件的尺寸精度与耐腐蚀性问题,但是相对于22MnB5裸板,其弯曲断裂应变下降了20%以上,也随之带来了氢致延迟开裂风险。作为承载汽车安全的部件,韧性不足将直接导致其在汽车碰撞过程中发生提前断裂,因此,保证强度的前提下提高热冲压钢的韧性可进一步优化车身安全件的结构与厚度设计,为汽车轻量化技术进步带来新的发展空间,同时,提高韧性也可降低热冲压零件制造、装配与服役过程中的氢致延迟开裂风险。汽车碰撞过程中的零件失效通常为平面应变状态下的弯曲断裂,一般采用德国汽车工业协会制定的VDA-238三点弯曲试验标准评价热冲压钢的韧性,现有1.4mm厚AlSi镀层热冲压钢的三点弯曲角度典型值~55°(标准要求≥50°),通用汽车在其2019版热冲压钢全球材料标准GMW14400中增加了高韧性AlSi镀层热冲压钢(Improved Bendability),要求三点弯曲角度≥60°,对比该标准中的常规热冲压材料弯曲断裂应变提高了20%。在不牺牲强度的前提下,如何提高AlSi镀层热冲压钢的韧性并消除热冲压零件的延迟开裂风险,已成为全球车身轻量化技术发展新的焦点。 此外,尽管学术界和工业界对Al-Si镀层热冲压钢加热过程中镀层和基体微观组织演化、镀层高温变形行为、焊接性能、涂镀性能和耐腐蚀性等已进行了广泛研究,但在实际工业应用中,现有AlSi镀层热冲压钢还存在炉辊结垢、加热效率低、模具磨损严重等影响热冲压生产过程的问题;同时,AlSi镀层热冲压钢产品的耐腐蚀及电阻点焊等相关机理还未研究清楚。 综上,亟需在AlSi镀层技术的开发上做出创新,大幅提高AlSi镀层热冲压钢的韧性,同时解决现有AlSi镀层产品在生产端和应用端的一系列科学和技术痛点。
作者:高怀 发表时间: 2021-10-11 09:40:51 阅读(1326) 评论(0)

4:[研发项目动态--产业化示范工程]科技新进展:高品质冷轧带钢精整核心装备及关键技术开发与应用

精整生产线是板带从钢厂走向用户的关键环节,在钢铁工业生产中起着举足轻重的作用,是成品板带质量的最终保障。项目开展前,高品质冷轧带钢精整生产装备与关键技术主要掌握在德国西马克、日本三菱、奥地利安德里茨等国外几大钢铁集团手中。国内现有的精整工艺技术很难满足高品质冷轧带钢产品生产的质量要求,成材率与机组产量均很低,没有形成系统性的工艺控制理论,且现场仍然以经验控制为主,导致高品质冷轧带钢的边部质量、板形以及表面质量等指标与国际水平仍存在很大差距。精整装备与工艺的不足严重限制了机组产能与产品质量,更谈不上高品质稳定生产。如何攻克精整生产线的设备与工艺难题就成为解决高品质冷轧带钢产品生产技术瓶颈的关键所在。 针对国内精整装备与工艺现状,燕山大学联合中国重型机械研究院股份公司、宝山钢铁股份有限公司、唐山钢铁集团有限责任公司,以实现高品质冷轧板带高效稳定精整生产为目标,立足高品质冷轧带钢精整成套装备与生产关键技术国内自主设计与开发,从带钢边部质量控制、带钢板形与表面质量控制、拉矫及上下游协同控制三方面入手展开研究,历经十余年持续攻关,突破了高品质冷轧带钢精整生产生产关键装备与技术瓶颈,形成了自主知识产权,最终实现了高品质冷轧带钢高效稳定工业化生产。
作者:高怀 发表时间: 2021-10-11 09:11:35 阅读(1157) 评论(0)

5:[研发项目动态--产业化示范工程]科技新进展:热轧板带轧机弯窜装备关键技术研发与应用

板形是板带材的重要质量指标,弯窜系统是改善板形的核心系统,具有改善板形、提高生产率、降低辊耗等优点,是现代板带轧机的的核心功能和结构。但是,弯窜系统因其机电液控多系统集成特性决定的复杂性,以及市场对品种、板形控制的要求越来越高,现有弯窜辊技术的成熟度和可靠度仍然不足,存在故障率高、运行不稳定等诸多问题,严重影响轧机正常生产。 我国现有弯窜装备技术主要是通过消化吸收外商技术而来,至今面临外商的专利封锁和技术保密,尤其是在宽幅板带材轧机弯窜方面,国内新建和改造市场长期被外商垄断,不利于我国冶金核心装备的国产化,也不利于我国钢铁企业的高质量发展。因此,开发具有我国自主知识产权的热轧板带轧机高效、高精度弯窜装备势在必行,同时研究开发保障弯窜装备设计及制造高质量的先进技术方法也具有重要意义。 中冶赛迪项目团队经过不断的研发和工程实践,系统研究了弯窜辊对板形控制的影响、高精度弯窜辊机电液系统耦合模拟仿真、弯辊装置离线模拟加载测试和验证评价方法等核心技术和方法,形成了热轧板带轧机高效高精度弯窜装备技术及相关设计验证方法
作者:高怀 发表时间: 2021-09-26 10:19:56 阅读(1234) 评论(0)

6:[研发项目动态--产业化示范工程]科技新进展: : 极寒环境用高强韧易焊接海洋装备用钢关键技术 创新及工程应用

国内现有船舶及海洋装备用钢无法满足极寒环境应用,其主要原因在于: 1、36-40kg高强船板,通常采用控轧、正火轧制或传统TMCP方式生产,常规组织的韧脆转变温度较高、防止结构脆性瞬断能力不足,无法满足极地船舶-60℃的设计服役要求; 2、极寒和超深水海洋平台用钢需满足超高强、大厚度、易焊接、厚向均匀等特性,传统上采用调质生产的钢板其高屈强比、高碳当量导致可焊性差;钢板厚度方向性能不均,心部强度和低温韧性易存在波动,无法满足超深水和极寒海工装备在高韧性设计和应用服役性能要求。 为满足国家重点领域关键材料亟需,鞍钢联合项目各完成单位开展“产-学-研-用”协同创新,针对不同海洋装备的设计选材要求,实施材料设计-制造-应用-服役评价等全链条集成化技术创新,探清低温韧化机制,开发出全系列极寒环境用高强韧易焊接海洋装备用钢,实现国内外重大海工装备示范应用,为海工装备产业技术升级、实现高端材料自主可控提供了重要支撑。 鞍钢作为国内海洋装备用钢的重要研发基地,率先完成F级极寒环境海洋装备用钢的船级社认证,与项目完成单位在极寒环境海洋装备用钢的合金体系设计、强韧化机理、服役性能评价等方面开展了合作,并积累了丰富的经验。鞍钢拥有国际一流的海洋工程用钢生产装备,5500mm轧机轧制力高达105000kN,最大板宽可达5200mm,完全可以满足极寒环境海洋装备用钢的轧制要求。鞍钢拥有强大的热处理能力,可进行淬火、回火、正火、退火等热处理,为本项目的研发提供了支撑。
作者:高怀 发表时间: 2021-09-26 10:19:40 阅读(1211) 评论(0)

7:[研发项目动态--产业化示范工程]科技新进展:绿色低耗独立传动式高速线棒材模块轧机的研发及产业化应用

线材行业向高品质、低能耗、绿色化发展的步伐不断加快。但长期以来受工艺技术及装备水平等影响,国内线材高速轧机装备技术在提高产品品质、降低轧制能耗及降低生产成本等方面进步缓慢。主要体现在:1)轧制能力小,不能适应低温轧制。2)轧机刚性差,产品尺寸波动大。3)受制于传统集中传动型式,工艺孔型设计及变形制度不灵活,轧机高速运行稳定性差,设备空载消耗及辊环消耗高。4)高速线材终轧机组速度高、结构复杂,对设计、制造和装配要求极高,创新开发难度极大,而进口装备费用高、供货周期长、备件及维护费用高,严重制约国内高速线材生产技术的进步与发展。 针对高速线材行业转型升级存在的核心问题,本项目以高品质、低能耗及绿色化线材高速轧机装备技术为目标,创新性的提出了独立传动的模块化高速轧机装备技术理念,开发了全新的线材绿色、低耗独立传动式模块化高速轧机工艺、装备及控制技术,并实现了产业化应用,提高了线材生产的灵活性,提升了产品品质,降低了能耗及生产成本,实现了线材的绿色低耗生产。
作者:高怀 发表时间: 2021-09-26 10:19:29 阅读(1104) 评论(0)

8:[研发项目动态--产业化示范工程]科技新进展:高品质模具钢中厚板关键制备技术与产业化

制约模具钢中厚板技术进步以及全行业推广三方面技术瓶颈如下: 1、高碳-高合金模具大板坯开发瓶颈—模具钢中厚板谱系化问题 受转炉冶炼高合金化损耗大、均质化困难,尺寸效应引发的大板坯裂纹问题制约,世界上尚没有采用“转炉+立弯式连铸” 进行高碳-高合金大板开发的先例(C:0.36-0.45wt%,合金:9-15wt%),基于不对称变形条件下等向冲击性能(≥0.8)及满足NADCA标准的组织控制技术,1000-4000mm超宽板短制程生产技术亦是空白。 2、复合模具钢开发瓶颈—模具钢中厚板厚度提升问题 真空复合坯料在成本上、生产节奏上优于钢锭,在轧制规格及内部质量方面上优于400mm以上规格连铸坯。其技术本质在于金属 “熔化-凝固”的延申,因此模具钢的易裂难焊性(CE:0.56-3.38)、模具钢的高磁性对电子束的磁偏吹等成为利用复合坯生产模具钢最大的技术瓶颈。世界上尚没有采用“真空电子束复合”技术进行模具钢开发的成功案例。 3、低圧缩比、短制程模具中厚板生产工艺瓶颈—生产的轧制极限和效率的问题 无论是谱系化模具钢中厚板生产,还是复合技术生产,均需最大程度的挖掘连铸坯料的轧制极限,即突破行业内中厚板生产最小压缩比,达到压缩比≤2的水平,同时实现短流程并保证质量长期稳定、可控。 鞍钢股份有限公司项目团队依托省、集团重大项目,开展高品质模具钢中厚板关键制备技术攻关,突破传统连铸生产模具钢的合金化极限,坯料规格极限以及压缩比极限,形成“高效生产-稳定控制”一体化工艺,实现“关键制备技术-材料应用”全链条自主创新,开发出五大系列30余种模具中厚板产品。
作者:高怀 发表时间: 2021-09-17 09:12:13 阅读(1191) 评论(0)

9:[研发项目动态--产业化示范工程]科技新进展:大型高炉高比例球团矿低碳冶炼技术开发与应用

钢铁工业是国民经济的支柱产业,也是污染物和碳排放重点行业,根据研究报告我国钢铁行业二氧化碳排放占全国总量的16%左右。在国家“双碳”目标及十四五“更趋严格的能耗”要求下,钢铁行业低碳绿色发展越显重要。我国钢铁工艺主要以高炉+转炉长流程冶炼为主,长流程钢占比90%,而长流程的吨钢CO2排放在1.8~2.2t,二氧化硫、颗粒物、氮氧化物等污染物排放0.7kg/t以上,其中高炉炼铁系统的污染物排放占90%以上,CO2排放占85%以上,所以高炉炼铁系统的节能减排对钢铁工业低碳绿色化发展意义重大。 我国高炉炼铁炉料结构主要以烧结矿为主,烧结矿平均入炉比例在70%以上,但烧结工艺普遍存在工序能耗高、烟气和污染物排放量大等问题,对炼铁系统的污染物和碳排放影响较大。球团工艺的能耗和污染物排放仅为烧结工序的50%以下,CO2排放为烧结的30%左右,所以用球团替代烧结,提高球团矿在高炉炼铁中的使用比例有利于降低炼铁系统的污染物和碳排放。
作者:高怀 发表时间: 2021-09-15 04:57:35 阅读(1201) 评论(0)

10:[研发项目动态--产业化示范工程]科技新进展:地下矿山采矿工程精细爆破技术研究

铁矿石供应能力严重不足成为钢铁原料供应链“脆弱”的关键,其保障程度关系到国民经济稳定发展和国家安全。金属矿山正面临着“由上至下,由浅至深、由易至难”的关键转型期,在生态环境和生产成本双重压力下,安全、绿色、高效开采是必然选择。作为金属矿山采掘难以替代的重要手段,爆破还面临着关键科学与技术难题亟待研究解决:炸药爆炸做功与岩体破碎耗能的耦合作用机理尚不清楚;炸药能量释放与爆炸裂纹扩展的有效控制原理还有待进一步研究;其表现技术方面的问题主要有:爆破落矿块度大、贫化率高;爆破掘进效率低、成型差;爆破设计水平低、精准性差。 针对以上关键科学和技术难题,北京科技大学杨仁树教授团队依托国家和省部级科研项目的支持,并以鞍钢弓长岭井下矿为工程背景开展科研攻关。通过爆炸能量释放精密控制原理的研究,实现了理论创新和爆破技术的突破,建立了金属矿山安全高效爆破工艺技术体系,将研究成果服务于工程应用并逐步推广使用,取得了良好的社会和经济效益,为提升我国金属矿山铁矿石产能提供了保障,2021年该成果荣获冶金科技进步一等奖。
作者:高怀 发表时间: 2021-09-15 04:57:24 阅读(988) 评论(0)

第14页/共44页 首页  上一页  10  11  12  13  14  15  16  17  18  19  下一页   末页    

中国金属学会 版权所有2013 Tel:010-65133322-1612 京ICP备06036139号-4